On Successors of Singular Cardinals II

Todd Eisworth

Ohio University

January 31, 2012

イロト イポト イヨト イヨト

3

Todd Eisworth

 If S is stationary, then Refl(S) means that every stationary subset of S reflects.

イロト イポト イヨト イヨト

э.

- \Box_{μ} implies Refl(*S*) fails for every stationary $S \subseteq \mu^+$.
- If μ is singular and \Box_{μ} fails, then 0^{\sharp} exists.

Current Project

Theorem

Suppose $\kappa < \lambda$ are regular cardinals and λ carries a uniform κ^+ -complete ultrafilter. Then $\operatorname{Refl}(S_{\kappa}^{\lambda})$ holds.

イロト イポト イヨト イヨト

Current Project

Theorem

Suppose $\kappa < \lambda$ are regular cardinals and λ carries a uniform κ^+ -complete ultrafilter. Then $\operatorname{Refl}(S_{\kappa}^{\lambda})$ holds.

Lemma

Suppose $\kappa < \lambda$ are regular cardinals, $S \subseteq S_{\kappa}^{\lambda}$ has no stationary initial segment, and A_{δ} is cofinal in δ of order-type κ for each $\delta \in S$. Then for each $\beta < \mu^+$, there is a regressive function F_{β} with domain $S \cap \beta$ such that the family $\{A_{\alpha} \setminus F_{\beta}(\alpha) : \alpha \in S \cap \beta\}$ is pairwise disjoint.

Assume

- *U* is a uniform κ^+ -complete ultrafilter on λ ,
- $\langle A_{\alpha} : \alpha \in S \rangle$ is as in the assumptions of the lemma, and

イロト イポト イヨト イヨト 一臣

• $\langle F_{\beta} : \beta < \mu^+ \rangle$ is as in the conclusion of the lemma.

Given $\alpha \in S$ and $\epsilon < \mu^+$, define B_{ϵ}^{α} to be those $\beta > \alpha$ for which $F_{\beta}(\alpha)$ is contained in the "first ϵ elements of A_{α} ".

イロト イポト イヨト イヨト

Given $\alpha \in S$ and $\epsilon < \mu^+$, define B_{ϵ}^{α} to be those $\beta > \alpha$ for which $F_{\beta}(\alpha)$ is contained in the "first ϵ elements of A_{α} ". Then

$$\bigcup_{\kappa < \kappa} \mathbf{A}_{\kappa}^{\alpha} = (\alpha, \lambda).$$
(1)

Given $\alpha \in S$ and $\epsilon < \mu^+$, define B_{ϵ}^{α} to be those $\beta > \alpha$ for which $F_{\beta}(\alpha)$ is contained in the "first ϵ elements of A_{α} ". Then

$$\bigcup_{\kappa < \kappa} \mathbf{A}_{\kappa}^{\alpha} = (\alpha, \lambda).$$
 (1)

イロト イ理ト イヨト イヨト

Hence there is $\epsilon(\alpha)$ such that $B^{\alpha}_{\epsilon(\alpha)} \in U$.

Now consider the function $F : S \to \lambda$ defined by setting $F(\alpha)$ to be the $\epsilon(\alpha)$ + 1st element of A_{α} .

イロト イポト イヨト イヨト

= 990

Now consider the function $F : S \to \lambda$ defined by setting $F(\alpha)$ to be the $\epsilon(\alpha) + 1$ st element of A_{α} . Given $\alpha < \gamma$ in *S*, we know

$$B^{\alpha}_{\epsilon(\alpha)} \cap B^{\gamma}_{\epsilon(\gamma)} \neq \emptyset, \tag{2}$$

so choose β in both of these sets.

Introduction ADS_{μ}

Proof of Theorem 1

We know

Todd Eisworth

₹ 990

Introduction ADS_{μ}

Proof of Theorem 1

We know

• $A_{\alpha} \setminus F(\alpha) \subseteq A_{\alpha} \setminus F_{\beta}(\alpha)$,

₹ 990

・ロト・日本・ ・ ヨト・ ヨト・

We know

- $A_{\alpha} \setminus F(\alpha) \subseteq A_{\alpha} \setminus F_{\beta}(\alpha)$,
- $A_{\gamma} \setminus F(\gamma) \subseteq A_{\gamma} \setminus F_{\gamma}(\alpha)$, and

We know

- $A_{\alpha} \setminus F(\alpha) \subseteq A_{\alpha} \setminus F_{\beta}(\alpha)$,
- $A_{\gamma} \setminus F(\gamma) \subseteq A_{\gamma} \setminus F_{\gamma}(\alpha)$, and
- $(A_{\alpha} \setminus F_{\beta}(\alpha)) \cap (A_{\gamma} \setminus F_{\beta}(\gamma)) = \emptyset.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

We know

- $A_{\alpha} \setminus F(\alpha) \subseteq A_{\alpha} \setminus F_{\beta}(\alpha)$,
- $A_{\gamma} \setminus F(\gamma) \subseteq A_{\gamma} \setminus F_{\gamma}(\alpha)$, and
- $(A_{\alpha} \setminus F_{\beta}(\alpha)) \cap (A_{\gamma} \setminus F_{\beta}(\gamma)) = \emptyset.$

Thus $A_{\alpha} \setminus F(\alpha)$ and $A_{\gamma} \setminus F(\gamma)$ are disjoint, hence F disjointifies $\{A_{\alpha} : \alpha \in S\}$.

= 990

イロト イ押ト イヨト イヨトー

We know

- $A_{\alpha} \setminus F(\alpha) \subseteq A_{\alpha} \setminus F_{\beta}(\alpha)$,
- $A_{\gamma} \setminus F(\gamma) \subseteq A_{\gamma} \setminus F_{\gamma}(\alpha)$, and

•
$$(A_{\alpha} \setminus F_{\beta}(\alpha)) \cap (A_{\gamma} \setminus F_{\beta}(\gamma)) = \emptyset.$$

Thus $A_{\alpha} \setminus F(\alpha)$ and $A_{\gamma} \setminus F(\gamma)$ are disjoint, hence F disjointifies $\{A_{\alpha} : \alpha \in S\}$.

This is impossible as S is stationary, hence Theorem 1 holds.

イロト イポト イヨト イヨト

This implies the following statements:

- If $\kappa < \lambda$ are regular with κ compact, then $\text{Refl}(S_{<\kappa}^{\lambda})$ holds.
- 2 If μ is a singular limit of compact cardinals, then $\operatorname{Refl}(\mu^+)$ holds.

 ADS_{μ} means there is a family $\mathcal{A} = \langle \mathcal{A}_{\alpha} : \alpha < \mu^+ \rangle$ of unbounded subsets of μ (not μ^+) such that $\langle \mathcal{A}_{\alpha} : \alpha < \beta \rangle$ can be disjointified for each $\beta < \mu^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 ADS_{μ} means there is a family $\mathcal{A} = \langle \mathcal{A}_{\alpha} : \alpha < \mu^+ \rangle$ of unbounded subsets of μ (not μ^+) such that $\langle \mathcal{A}_{\alpha} : \alpha < \beta \rangle$ can be disjointified for each $\beta < \mu^+$.

Note

• "ADS" stands for "almost disjoint sets".

イロト イポト イヨト イヨト

 ADS_{μ} means there is a family $\mathcal{A} = \langle \mathcal{A}_{\alpha} : \alpha < \mu^+ \rangle$ of unbounded subsets of μ (not μ^+) such that $\langle \mathcal{A}_{\alpha} : \alpha < \beta \rangle$ can be disjointified for each $\beta < \mu^+$.

Note

- "ADS" stands for "almost disjoint sets".
- no subfamily of \mathcal{A} of cardinality μ^+ can be disjointified.

イロト イポト イヨト イヨト

 ADS_{μ} means there is a family $\mathcal{A} = \langle \mathcal{A}_{\alpha} : \alpha < \mu^+ \rangle$ of unbounded subsets of μ (not μ^+) such that $\langle \mathcal{A}_{\alpha} : \alpha < \beta \rangle$ can be disjointified for each $\beta < \mu^+$.

Note

- "ADS" stands for "almost disjoint sets".
- no subfamily of \mathcal{A} of cardinality μ^+ can be disjointified.

・ロン・西方・ ・ ヨン・ ヨン・

• ADS $_{\mu}$ holds if μ is regular. (blackboard)

ADS_{μ}, μ singular

What goes wrong if μ is singular?

Note: If ADS_{μ} holds for μ singular, then we may assume that each A_{α} is of order-type $cf(\mu)$.

イロト イポト イヨト イヨト

We will work with cardinals of the form μ^+ where μ is singular of countable cofinality.

・ロト・日本・ ・ ヨト・ ヨト・

∃ 𝒫𝔅

We will work with cardinals of the form μ^+ where μ is singular of countable cofinality.

This simplifies the statements and proofs of theorems. In the end we will simply state the full results.

イロト イポト イヨト イヨト

Introduction ADS_{μ}

Restrictions on ultrafilters

Theorem (Theorem 2)

Suppose μ is singular of countable cofinality and ADS_{μ} holds. If I is a countably complete proper ideal on μ^+ containing the bounded ideal, then we can find μ^+ disjoint I-positive sets.

イロト イ押ト イヨト イヨトー

Let $\langle A_{\alpha} : \alpha < \mu \rangle$ be an ADS_{μ}-family, with each A_{α} of order-type ω , and let $\eta_{\alpha} : \omega \to A_{\alpha}$ be the increasing enumeration of A_{α} .

Introduction ADS,,

イロト イヨト イヨト イ

크 > 크

Let $\langle A_{\alpha} : \alpha < \mu \rangle$ be an ADS_{μ}-family, with each A_{α} of order-type ω , and let $\eta_{\alpha} : \omega \to A_{\alpha}$ be the increasing enumeration of A_{α} . For $\beta < \mu^+$, let F_{β} disjointify $\langle A_{\alpha} : \alpha < \beta \rangle$.

Introduction ADS,,

イロト イポト イヨト イヨト

э.

Let $\langle A_{\alpha} : \alpha < \mu \rangle$ be an ADS_{μ}-family, with each A_{α} of order-type ω , and let $\eta_{\alpha} : \omega \to A_{\alpha}$ be the increasing enumeration of A_{α} .

For $\beta < \mu^+$, let F_{β} disjointify $\langle A_{\alpha} : \alpha < \beta \rangle$.

For $\alpha < \mu^+$ and $n < \omega$, define B_n^{α} be the set of $\beta > \alpha$ for which $F_{\beta}(\alpha) < \eta_{\alpha}(n)$.

イロト イポト イヨト イヨト

Let $\langle A_{\alpha} : \alpha < \mu \rangle$ be an ADS_{μ}-family, with each A_{α} of order-type ω , and let $\eta_{\alpha} : \omega \to A_{\alpha}$ be the increasing enumeration of A_{α} .

For
$$\beta < \mu^+$$
, let F_{β} disjointify $\langle A_{\alpha} : \alpha < \beta \rangle$.

For $\alpha < \mu^+$ and $n < \omega$, define B_n^{α} be the set of $\beta > \alpha$ for which $F_{\beta}(\alpha) < \eta_{\alpha}(n)$.

"The disjointer for β removes the first *m* elements of A_{α} for some m < n."

• $\langle B_n^{\alpha} : n < \omega \rangle$ is increasing with union (α, μ^+) .

- $\langle B_n^{\alpha} : n < \omega \rangle$ is increasing with union (α, μ^+) .
- $(\alpha, \mu^+) \notin I$ and *I* is countably complete, so

- $\langle B_n^{\alpha} : n < \omega \rangle$ is increasing with union (α, μ^+) .
- $(\alpha, \mu^+) \notin I$ and *I* is countably complete, so
- find $n(\alpha)$ such that $B^{\alpha}_{n(\alpha)} \notin I$.

- $\langle B_n^{\alpha} : n < \omega \rangle$ is increasing with union (α, μ^+) .
- $(\alpha, \mu^+) \notin$ *I* and *I* is countably complete, so
- find $n(\alpha)$ such that $B^{\alpha}_{n(\alpha)} \notin I$.

Let $x_{\alpha} = \eta_{\alpha}(n(\alpha) + 1)$.

Introduction ADS_{μ}

•
$$\langle B_n^{\alpha} : n < \omega \rangle$$
 is increasing with union (α, μ^+) .

- $(\alpha, \mu^+) \notin$ *I* and *I* is countably complete, so
- find $n(\alpha)$ such that $B^{\alpha}_{n(\alpha)} \notin I$.

Let
$$x_{\alpha} = \eta_{\alpha}(n(\alpha) + 1)$$
.

Conclusion

 $x_{\alpha} \in A_{\alpha} \setminus F_{\beta}(\alpha)$ for an *I*-positive set of β .

How many possibilities exist for x_{α} ?

₹ 990

How many possibilities exist for x_{α} ? Fix $x^* < \mu$ such that $Z := \{\alpha < \mu^+ : x_{\alpha} = x^*\}$ is of size μ^+ .

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

How many possibilities exist for x_{α} ? Fix $x^* < \mu$ such that $Z := \{\alpha < \mu^+ : x_{\alpha} = x^*\}$ is of size μ^+ . For $\alpha \in z$, let $Y_{\alpha} := \{\beta < \mu^+ : x^* \in A_{\alpha} \setminus F_{\beta}(\alpha)\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ ○ ○

How many possibilities exist for x_{α} ?

Fix $x^* < \mu$ such that $Z := \{ \alpha < \mu^+ : x_\alpha = x^* \}$ is of size μ^+ .

For $\alpha \in z$, let $Y_{\alpha} := \{\beta < \mu^+ : x^* \in A_{\alpha} \setminus F_{\beta}(\alpha)\}.$

• Y_{α} is *I*-positive for each $\alpha \in Z$,

• $\langle Y_{\alpha} : \alpha \in Z \rangle$ is a pairwise disjoint family. (blackboard)

How many possibilities exist for x_{α} ?

Fix $x^* < \mu$ such that $Z := \{ \alpha < \mu^+ : x_\alpha = x^* \}$ is of size μ^+ .

For $\alpha \in z$, let $Y_{\alpha} := \{\beta < \mu^+ : x^* \in A_{\alpha} \setminus F_{\beta}(\alpha)\}.$

• Y_{α} is *I*-positive for each $\alpha \in Z$,

• $\langle Y_{\alpha} : \alpha \in Z \rangle$ is a pairwise disjoint family. (blackboard)

Conclusion

There are μ^+ disjoint *I*-positive subsets of μ^+ . Hence uniform countably complete filters on μ^+ are far from being ultrafilters.

Corollary

Suppose μ is singular of countable cofinality and there is a uniform countably-complete ultrafilter on μ^+ . Then ADS_{μ} fails.

イロト イポト イヨト イヨト

= 990

Corollary

Suppose μ is singular of countable cofinality and there is a uniform countably-complete ultrafilter on μ^+ . Then ADS_{μ} fails. In particular, if κ is compact, then ADS_{μ} fails for all singular $\mu > \kappa$ of countable cofinality.

イロト イポト イヨト イヨト

Full Theorem

Theorem

Suppose μ is singular and ADS_{μ} holds. If I is a proper cf(μ)-indecomposable ideal on μ^+ extending the bounded ideal, then there are μ^+ pairwise disjoint I-positive subsets of μ^+ .

イロト イポト イヨト イヨト

Full Theorem

Theorem

Suppose μ is singular and ADS_{μ} holds. If I is a proper cf(μ)-indecomposable ideal on μ^+ extending the bounded ideal, then there are μ^+ pairwise disjoint I-positive subsets of μ^+ .

イロト イポト イヨト イヨト

Corollary

If κ is compact, then ADS_{μ} fails for every singular $\mu > \kappa$.

Introduction ADS_µ

Connection to cardinal arithmetic

Theorem

Suppose μ is singular of countable cofinality and $\kappa^{\aleph_0} < \mu$ for all $\kappa < \mu$. If $\mu^{\aleph_0} > \mu^+$, then ADS_{μ} holds.

メロト メポト メヨト メヨト 二日

Idea of Proof

Suffices to find an "ADS_{μ}-family" in *some* set *A* of cardinality μ .

 ADS_{μ}

= 900

イロト イポト イヨト イヨト

Suffices to find an "ADS_{μ}-family" in *some* set *A* of cardinality μ . Suppose { $x_{\alpha} : \alpha < \mu$ } is a collection of distinct elements of $[\mu]^{\aleph_0}$, and let $\eta_{\alpha} : \omega \to x_{\alpha}$ be a bijection.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Suffices to find an "ADS_{μ}-family" in *some* set *A* of cardinality μ . Suppose { $x_{\alpha} : \alpha < \mu$ } is a collection of distinct elements of $[\mu]^{\aleph_0}$, and let $\eta_{\alpha} : \omega \to x_{\alpha}$ be a bijection.

Define $A_{\alpha} = \{\eta_{\alpha} \upharpoonright \ell : \ell < \omega\} \in [{}^{<\omega}\mu]^{\aleph_0}$

Suffices to find an "ADS_{μ}-family" in *some* set *A* of cardinality μ . Suppose $\{x_{\alpha} : \alpha < \mu\}$ is a collection of distinct elements of $[\mu]^{\aleph_0}$, and let $\eta_{\alpha} : \omega \to x_{\alpha}$ be a bijection.

Define $A_{\alpha} = \{\eta_{\alpha} \upharpoonright \ell : \ell < \omega\} \in [{}^{<\omega}\mu]^{\aleph_0}$

We construct $\{x_{\alpha} : \alpha < \mu^+\} \subseteq [\mu]^{\aleph_0}$ so that $\mathcal{A} = \{A_{\alpha} : \alpha < \mu^+\}$ witnesses ADS_{μ} .

イロト イポト イヨト イヨト 一臣

Lemma 1 If $\mathcal{F} \subseteq [\mu]^{<\mu}$ is of cardinality μ^+ , then there is an $x \in [\mu]^{\aleph_0}$ that is not covered by any member of \mathcal{F} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Lemma 1 If $\mathcal{F} \subseteq [\mu]^{<\mu}$ is of cardinality μ^+ , then there is an $x \in [\mu]^{\aleph_0}$ that is not covered by any member of \mathcal{F} .

If $A \in \mathcal{F}$, then $|[A]^{\aleph_0}| < \mu$. So \mathcal{F} can cover at most μ^+ elements of $[\mu]^{\aleph_0}$. But $\mu^{\aleph_0} > \mu^+$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

For
$$\beta < \mu^+$$
, fix a sequence $\langle A_n^\beta : n < \omega \rangle$ such that
• $A_0^\beta = \emptyset$

•
$$\beta = \bigcup_{n < \omega} A_n^{\beta}$$

•
$$|\mathbf{A}_{\mathbf{n}}^{\beta}| < \mu$$
 for all $\mathbf{n} < \omega$

•
$$A_n^{\beta} \subseteq A_{n+1}^{\beta}$$
.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

By induction on $\alpha < \mu^+$, choose $x_{\alpha} \in [\mu]^{\aleph_0}$ such that for no $\beta < \mu^+$ and $n < \omega$ is x_{α} a subset of $\bigcup \{x_{\gamma} : \gamma \in A_n^{\beta} \cap \alpha\}$.

イロト イポト イヨト イヨト

∃ <2 <</p>

By induction on $\alpha < \mu^+$, choose $x_{\alpha} \in [\mu]^{\aleph_0}$ such that for no $\beta < \mu^+$ and $n < \omega$ is x_{α} a subset of $\bigcup \{x_{\gamma} : \gamma \in A_n^{\beta} \cap \alpha\}$. Why is this possible? See Lemma 1.

< ロ > < 同 > < 臣 > < 臣 > -

э.

This give us a family $\langle x_{\alpha} : \alpha < \mu^+ \rangle$.

This give us a family $\langle x_{\alpha} : \alpha < \mu^+ \rangle$.

Let $\eta_{\alpha}: \omega \to x_{\alpha}$ be a bijection.

We want the family of sets of the form $\{\eta_{\alpha} \upharpoonright \ell : \ell < \omega\}$ to witness ADS_{μ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

Given $\beta < \mu^+$, we need a function $h_{\beta} : \beta \to \omega$ such that

$$\Delta(\alpha, \gamma) \le \max\{h_{\beta}(\alpha), h_{\beta}(\gamma)\}$$
(3)

for all $\alpha,\gamma<\beta,$ where

$$\Delta(\alpha, \gamma) = \text{ least } \ell \text{ such that } \eta_{\alpha}(\ell) \neq \eta_{\gamma}(\ell).$$
 (4)

For each $n < \omega$, $\{x_{\alpha} : \alpha \in A_{n}^{\beta}\}$ has a one-to-one choice function f_{n}^{β} .

For each $n < \omega$, $\{x_{\alpha} : \alpha \in A_{n}^{\beta}\}$ has a one-to-one choice function f_{n}^{β} .

We define $f_n^{\beta} \upharpoonright (A_n^{\beta} \cap \alpha)$ be induction on α .

Todd Eisworth

イロト 不得 とくほとくほとう ほ

For each $n < \omega$, $\{x_{\alpha} : \alpha \in A_{n}^{\beta}\}$ has a one-to-one choice function f_{n}^{β} .

We define $f_n^{\beta} \upharpoonright (A_n^{\beta} \cap \alpha)$ be induction on α .

 $\alpha=$ 0 and α limit are trivial.

・ロト ・四ト ・ヨト ・ヨト

For each $n < \omega$, $\{x_{\alpha} : \alpha \in A_{n}^{\beta}\}$ has a one-to-one choice function f_{n}^{β} .

We define $f_n^{\beta} \upharpoonright (A_n^{\beta} \cap \alpha)$ be induction on α .

 $\alpha=$ 0 and α limit are trivial.

If $\alpha = \gamma + 1$, then x_{γ} is not a subset of $\bigcup \{x_{\epsilon} : \epsilon \in A_n^{\beta} \cap \gamma\}$ so we can define $f_n^{\beta}(\gamma)$.

Define $k_{\beta} : \beta \to \omega$ as follows:

Define $k_{\beta} : \beta \to \omega$ as follows: For $\alpha \in A_{n+1}^{\beta} \setminus A_n^{\beta}$, $k_{\beta}(\alpha)$ is the unique $k < \omega$ such that $f_n^{\beta}(\alpha) = \eta_{\alpha}(k)$.

For fixed $\nu \in {}^{<\omega} \mu$, $\{\alpha < \beta : \nu = \eta_{\alpha} \upharpoonright k_{\beta}(\alpha) + 1\}$ contains at most one element of each $A_{n+1}^{\beta} \setminus A_n^{\beta}$.

For fixed $\nu \in {}^{<\omega} \mu$, $\{\alpha < \beta : \nu = \eta_{\alpha} \upharpoonright k_{\beta}(\alpha) + 1\}$ contains at most one element of each $A_{n+1}^{\beta} \setminus A_n^{\beta}$.

Suppose $\alpha \neq \gamma$ in $A_{n+1}^{\beta} \setminus A_n^{\beta}$ and

$$\nu = \eta_{\alpha} \upharpoonright (k_{\beta}(\alpha) + 1) = \eta_{\gamma} \upharpoonright (k_{\beta}(\gamma) + 1).$$
(5)

For fixed $\nu \in {}^{<\omega} \mu$, $\{\alpha < \beta : \nu = \eta_{\alpha} \upharpoonright k_{\beta}(\alpha) + 1\}$ contains at most one element of each $A_{n+1}^{\beta} \setminus A_n^{\beta}$.

Suppose $\alpha \neq \gamma$ in $A_{n+1}^{\beta} \setminus A_n^{\beta}$ and

$$\nu = \eta_{\alpha} \upharpoonright (k_{\beta}(\alpha) + 1) = \eta_{\gamma} \upharpoonright (k_{\beta}(\gamma) + 1).$$
(5)

Then

$$f_{n}^{\beta}(\alpha) = \eta_{\alpha}(k_{\beta}(\alpha)) = \nu(k_{\beta}(\alpha)) = \nu(k_{\beta}(\gamma)) = \eta_{\gamma}(k_{\beta}(\gamma)) = f_{n}^{\beta}(\gamma).$$
(6)

Contradiction.

For $\alpha < \beta$, define

$$\boldsymbol{E}(\alpha) = \{\gamma < \beta : \max\{\boldsymbol{k}_{\beta}(\alpha), \boldsymbol{k}_{\beta}(\gamma)\} < \Delta(\alpha, \gamma)\}.$$
(7)

For $\alpha < \beta$, define

$$\boldsymbol{\mathsf{E}}(\alpha) = \{\gamma < \beta : \max\{\boldsymbol{\mathsf{k}}_{\beta}(\alpha), \boldsymbol{\mathsf{k}}_{\beta}(\gamma)\} < \Delta(\alpha, \gamma)\}. \tag{7}$$

₹ 990

 $E(\alpha)$ consists of those γ for which k_{β} has failed to disjointify A_{α} and A_{γ} .

 $E(\alpha)$ is at most countable.

 $E(\alpha)$ is at most countable.

If not, find k^* such that $B = \{\gamma \in E(\alpha) : k_\beta(\gamma) = k^*\}$ is uncountable. Set $\nu = \eta_\alpha \upharpoonright k^* + 1$. Then for $\gamma \in B$, we have

$$\eta_{\gamma} \restriction k_{\beta}(\gamma + 1) = \eta_{\alpha} \restriction k^* = \nu, \tag{8}$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

contradicting the previous lemma.

Note that $\gamma \in E(\alpha)$ if and only if $\alpha \in E(\gamma)$, so we can define a graph Γ on β by connecting α and γ if and only if $\gamma \in E(\gamma)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Note that $\gamma \in E(\alpha)$ if and only if $\alpha \in E(\gamma)$, so we can define a graph Γ on β by connecting α and γ if and only if $\gamma \in E(\gamma)$.

 Γ has countable valency, so connected components of Γ are at most countable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Note that $\gamma \in E(\alpha)$ if and only if $\alpha \in E(\gamma)$, so we can define a graph Γ on β by connecting α and γ if and only if $\gamma \in E(\gamma)$.

 Γ has countable valency, so connected components of Γ are at most countable.

 k_{β} "works" if α and γ are in different connected components.

イロト イポト イヨト イヨト

Note that $\gamma \in E(\alpha)$ if and only if $\alpha \in E(\gamma)$, so we can define a graph Γ on β by connecting α and γ if and only if $\gamma \in E(\gamma)$.

 Γ has countable valency, so connected components of Γ are at most countable.

 k_{β} "works" if α and γ are in different connected components.

Each connected component can be disjointified because it is countable.

イロト イポト イヨト イヨト

Note that $\gamma \in E(\alpha)$ if and only if $\alpha \in E(\gamma)$, so we can define a graph Γ on β by connecting α and γ if and only if $\gamma \in E(\gamma)$.

 Γ has countable valency, so connected components of Γ are at most countable.

 k_{β} "works" if α and γ are in different connected components.

Each connected component can be disjointified because it is countable.

ヘロン 人間 とくほ とくほ とう

It is straightforward now to "correct" k_{β} to a function which works everywhere.

Corollary

If κ is compact, then the Singular Cardinals Hypothesis holds above κ .

Corollary

If κ is compact, then the Singular Cardinals Hypothesis holds above κ .

If μ is the least failure of SCH above κ , then ADS_{μ} holds by the preceding theorem. But ADS_{μ} cannot hold above a compact cardinal by our earlier work.

イロン 不得 とくほ とくほとう